
Allwinner Technology CO., Ltd.

Configuration System and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved.

April 22, 2011

Configuration System

&

GPIO Management

V1.01

April 22, 2011

Allwinner Technology CO., Ltd.

Configuration System and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 1

April 22, 2011

Revision History

Version Date Section/ Page Changes Compared to Previous Issue

V1.00 2011.1.22 Initial version

V1.01 2011.4.22 Add configuration system workflow

Allwinner Technology CO., Ltd.

Configuration System and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 2

April 22, 2011

Table of Contents

Revision History ... 1

Table of Contents .. 2

1. Introduction ... 4

2. Term Definition ... 5

2.1. Configuration Script .. 5

2.2. Main Key... 5

2.3. Subkey ... 5

2.4. Subkey Value ... 6

2.5. GPIO Description .. 6

2.6. Configuration Script Modification .. 8

3. Configuration System Workflow and Application ... 10

3.1. Generate Configuration Data in PC .. 10

3.2. Data Transfer in System Boot ... 11

3.3. Data Transfer in Configuration System Calling .. 11

3.4. Configuration System Application .. 13

3.4.1. Application Overview ... 13

3.4.2. Different Hardware Modules... 13

3.4.3. Difference Parameters for the Same Modules ... 14

3.4.4. Customized Parameters ... 15

4. How to Use Configuration Script .. 17

4.1. Fetch Configuration Parameters .. 17

4.2. Fetch the Number of Subkeys ... 19

4.3. Fetch the Number of Main Keys ... 20

4.4. Get the Number of GPIO in Main Keys .. 21

4.5. Fetch the GPIO Data in Main Keys .. 22

5. GPIO Management .. 24

Allwinner Technology CO., Ltd.

Configuration System and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 3

April 22, 2011

5.1. Request GPIO ... 24

5.1.1. Request GPIO Through Main Keys .. 25

5.1.2. Request GPIO Through Main Keys and Subkeys ... 26

5.1.3. Request GPIO Through Customization ... 27

5.2. Release GPIO .. 28

5.3. Fetch all the GPIOs Configuration of a Handle .. 28

5.4. Fetch One GPIO Configuration of a Handle ... 32

5.5. Set One GPIO Configuration of the Handle .. 33

5.6. Set One GPIO IO Status of the Handle ... 36

5.7. Set One GPIO Build-in Resistor Status of the Handle .. 37

5.8. Set One GPIO Driver Strength of the Handle ... 38

5.9. Read One GPIO Level of the Handle .. 40

5.10. Set One GPIO Port Level of the Handle ... 43

5.11. The Handle in GPIO Management .. 46

5.11.1. What Handles are Used for? .. 46

5.11.2. Avoid Conflict of GPIO Access among Modules .. 46

5.11.3. Avoid Conflict between Modules and IO .. 48

5.11.4. Avoid Conflict between IO Input and IO Output .. 48

6. FAQ ... 错误！未定义书签。

Allwinner Technology CO., Ltd.

Configuration System and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 4

April 22, 2011

1. Introduction

This user manual introduces some conceptions and function interfaces of configuration system and

GPIO management. It also provides lots of examples so that users can solve related problems

accordingly.

The targeted readers of this manual cover all those people who have used or interested in

configuration system and GPIO management.

Allwinner Technology CO., Ltd.

Configuration System and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 5

2011-04-22

2. Term Definition

This section briefs some basic terms in configuration system and GPIO management.

2.1. Configuration Script

The configuration system takes the form of a Script on PC, and is suffixed with ini. Its content is

shown in Figure 2-1.

2.2. Main Key

In Figure2-2, character strings in square brackets are called Main Keys, such as [target]，

[twi_para], etc. They can be as long as 32 characters, excluding the end mark. Moreover, main key

names in one configuration script should be different.

2.3. Subkey

Fig 2-3Configuration Script Demo

The subkeys refer to the components of main keys. For example, there are four entries below

[target]:

Debugenable = 1

Allwinner Technology CO., Ltd.

Configuration System and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 6

2011-04-22

Storage_mode = 0

Boot_clock = 406

Core_vol = 1400

Character strings at the left of “=” are subkeys of the main key Target. The subkey can be as long

as 32 characters, excluding the end mark. The subkeys names in one main key should be different,

but subkey names in different main keys in a script can be identical.

2.4. Subkey Value

The subkey value takes three forms:

1) The subkey values in Fig 2-4 are integers, such as 1, 0, 406, etc. It can be in hexadecimal

system, but not expressions. For example, in twi_para, the twi_port subkey value is 0;

2) The subkey value can also be a GPIO description. For example, twi_scl value is:

twi_scl = port: PB0<2><default><default><default>

3) The subkey value can also be a character string following “string”, which cannot exceed 128

bytes. For example, the string_test value is:

String_test = string:1234567890

2.5. GPIO Description

1) Port Group: (such as PortA, PortB)

Each port group includes several GPIO. The port group numbers vary in different IC.

2) Serial Number:

The serial number refers to the sequence of a GPIO in a port group. For example, the 22th pin of

PortA, 22 is its serial number. Since the serial number of each group begins with 0, PB3 refers to

the third pin of PortB, but it’s actually in the fourth sequence. This 0 rule is of little significance in

practice, you just need to refer to the IC pins given on circuit diagram.

3) Function

The function indicates which module uses the GPIO. As for that, reference can be made to related

Specification.

For example, in the main key twi_para (twi_scl = port: PB0<2><default><default> <default>),

its two subkeys are used as Function 2.

4) Build-in Resistor

The build-in resistor, also called Pull-up Resistor or Pull-down Resistor, is an attribute of pins.

Allwinner Technology CO., Ltd.

Configuration System and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 7

2011-04-22

Generally, the pull-up resistor is used by default.

In GPIO description, the build-in resistor description is in the second “< >”, behind the Function

description:

0—High resistance;

1—Pull-up;

2—Pull-down;

Default—default state, Pull-up;

Except 0/1/2/Default, other options are invalid.

For example, to twi_scl (twi_scl = port: PB0<2><default><default> <default>), the first

“default” refers to the state of internal resistor, i.e. Pull-up.

5) Driver Strength

The driver strength defines the ability of a GPIO: the larger the driver strength, the sharper the IO

level changes. Generally, the default value is used.

The driver strength is described in the third “< >”, just following the build-in resistor description:

0— the drive strength level is 0;

1— the drive strength level is 1;

2— the drive strength level is 2;

3— the drive strength level is 3;

Except 0/1/2/3, other options are invalid.

For example, in twi_para, the SCL and SDA driver strength is “default”, that is Level 1.

6) Output Level

The last item in GPIO description is the GPIO output level.

When a GPIO is used as an IO, i.e. Function1, the IO output level status can be set here: 0—low

level, 1—high level. If a GPIO is not used as an IO, this item in description is pointless.

In conclusion, the complete format of GPIO description is:

Port: Port Group + Serial Number<Function><Build-in Resistor><Driver Strength><Output

Level>

And this form has some variants.

Here takes twi_para as an example:

Allwinner Technology CO., Ltd.

Configuration System and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 8

2011-04-22

twi_scl = port:PB0<2><default><default><default> （1）

twi_scl = port:PB0<2><default><default> （2）

twi_scl = port:PB0<2><default> （3）

twi_scl = port:PB0<2> （4）

These four have the same meaning: the 0 pin of Port B, Function2, default build-in resistor (1,

pull-up), default driver strength (since it’s used as TWI function, a non-output state, the output

level is invalid).

The (1) is a complete GPIO description format;

The (2) leaves out the output level information, which can be applied to situations where the

Function is non-output; if the GPIO is set to output, the IO level will remain unchanged;

The (3) leaves out the output level and driver strength information, in which case the driver

strength is Level 1, and the output level remains unchanged;

The (4) leaves out the output level, driver strength, and build-in resistor information, in which case

the resistor is pulled up, and driver strength is Level 1, and the output level remains unchanged.

2.6. Configuration Script Modification

Modification can be made to configuration script easily via text compilation tools. These

modifications can be:

1) modify the main key name, such as modify [target] to [targetX];

2) modify the subkey name, such as modify the boot_clock of Target to boot0_clock;

3) modify the subkey value, such as change the boot_clock value from 406 to 384, change

the twi_sda value to twi_sda = port:pb0<2><2><2><1>;

4) remove a main key:

If a main key has been removed, all its subkeys should be deleted as well. For example,

after [target] is removed, its subkeys debugenable/storage_mode/ boot_clock/core_vol

and their values should be removed.

5) remove a subkey:

If a subkey is removed, its name and value should be removed.

6) add a main key:

A main key can be empty without any subkey. For example, there is a main key [empty],

and then another main key [target] locates directly below it, then the [empty] is an empty

Allwinner Technology CO., Ltd.

Configuration System and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 9

2011-04-22

main key.

7) add a subkey

To add a subkey, please confirm which main key it belongs to. Usually, a subkey doesn’t

stand-alone, and belongs to the nearest main key above. Besides, the subkey value should

be finalized in the mean time. If the value cannot be confirmed, set it to 0.

8) Adjust the subkey position

It’s pointless adjusting a subkey position within the main key, but relocating it to another

main key endows it with a different meaning.

Allwinner Technology CO., Ltd.

Configuration System and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 10

April 22, 2011

3. Configuration System Workflow and

Application

This section will detail how the configuration script goes from PC to devices, and how data is

delivered in system when the configuration script is used.

3.1. Generate Configuration Data in PC

Following figure has illustrated how a data file in PC is made accessible to devices.

Configuration program

(assist in parameter

configuration)

Generate original

configuration script

Modify configuration

scripts manually
Manual

modification? Y/N
Y

N

PC configuration interface

finishes.

Transform configuration

scripts to data, and

embed it to boot1.bin.

Packing System

Fig 3-1 Device-End Configuration File Generation

It can be seen that after the configuration script is generated, it can be embedded into boot just by

simple packing and loading.

Allwinner Technology CO., Ltd.

Configuration System and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 11

April 22, 2011

3.2. Data Transfer in System Boot

After system startup, data will be read from boot to OS-defined location for OS access, as shown

below.

System

boot

Read the

configuration data

address

Move data in

boot1.bin to defined

address

Boot finishes. Jump

to the OS.

B
O

O
T

 P
hase

Move data to the system

reserve data area

Initialize the configuration

management module

Provide the user operation

service

O
peration P

hase

Exit the configuration

management module

System shutdown

Fig 3-2 Data Transfer in System Boot

During the Boot phase, data is read from boot1.bin and then delivered to the OS. After acquiring

the data, OS will initialize it, and then wait for user operations. When the system is shutdown, OS

needs to call the exit function of configuration management.

3.3. Data Transfer in Configuration System Calling

The following figure has presented how data is transferred to the system and how the system

reacts when the configuration system is called.

Allwinner Technology CO., Ltd.

Configuration System and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 12

April 22, 2011

Errors occur, Exit

Y

Y

N

N

Subkey name

matches?(Y/N)

Y

N

Put the matched

configuration data to user

buffer

Data acquisition

finishes, Exit

Call the configuration

function

The OS acquires

parameters and deliver

them to configuration

management module

Check the parameters

validity

The parameters are

valid?(Y/N)

Match the main key

name in configuration

data

The main key

matches?(Y/N)

Match the subkey name

in configuration data

Fig 3-3 Data Transfer in Configuration System Calling

Allwinner Technology CO., Ltd.

Configuration System and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 13

April 22, 2011

3.4. Configuration System Application

3.4.1. Application Overview

The discrepancies among different programs can be classified into four categories:

1) Different hardware modules, such as NAND Flash, RTC, etc;

2) Different parameters for the same hardware modules, such as GPIO, card detect pin, SPI

pin, etc; and different work frequency, such as DRAM frequency, CPU frequency, etc;

3) Different routing

4) Other differences

If programs have adopted different hardware modules or different parameters for the same module,

the system may need recompilation, while differences in routing or other aspects needn’t.

3.4.2. Different Hardware Modules

To handle the hardware module difference, some code can be made self-adaptive, for example, if

the NAND model can be automatically scanned, the flash driver needn’t be reconfigured. But for

those modules whose hardware models cannot be scanned, they should be reconfigured.

Take the RTC as an example:

The RTC needs configuration system for management in that some programs use internal RTC

modules while others use external RTC. Detailed method is that first, put all supported RTC

models to RTC driver, and provide corresponding codes as well; second, write configuration items

to configuration system, and specify the relationship between configuration and RTC, for example:

(supposing the internal RTC driver, external RTC XXXX driver and external RTC YYYY driver

have been provided)

Configuration 0 is related to internal RTC;

Configuration 1 is related to external RTC, model: XXXX;

Configuration 2 is related to external RTC, model: YYYY;

To realize that, a main key should be created in the configuration script, and then name the key

(the name is recommended to be in line with its function);

And then create the subkeys below the main key;

[rtc_select]

rtc_pattern = 0

Allwinner Technology CO., Ltd.

Configuration System and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 14

April 22, 2011

This indicates that internal RTC is used, and the model is 0.

If the subkey is:

This indicates that external RTC is used, and the model is YYYY.

In conclusion, in order to use a supported RTC, you just modify the RTC subkey value in

configuration script. (All supported RTC models and configuration values are clarified in Spec or

related materials.)

In fact, following function is called in RTC driver to process the configuration:

By calling this function, the RTC driver can fetch the RTC model set by users. As long as the user

configuration is identical with the program, the RTC can work normally. This method enables

RTC model modification without having to regenerating or replacing the RTC driver.

3.4.3. Difference Parameters for the Same Modules

As for this point, here takes the Card Detect as an example:

Generally, the GPIO is used as the Card Detect Pin: the card is regarded as inserted when it’s low

level, and not inserted when it’s high level. Since the card detect pins vary in different programs,

instead of altering card pin detect modules, configuration items can be used to report which pin is

used, see below:

rtc_pattern = 2

{

 int rtc_pattern;

 int ret;

 ret = OSAL_Script_FetchParser_Data(“rtc_select”, “rtc_pattern”, &rtc_pattern, 1);

if(ret >= 0)

 return rtc_pattern;

else

 return ret;

}

Allwinner Technology CO., Ltd.

Configuration System and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 15

April 22, 2011

The main key sddet_para shows that this is a parameter related to card detect; The subkey

detect_pin indicates which is the detect pin: 4
th

 pin of Port I, input, build-in resistor pulled-up,

driver strength level 1;

With these configuration items, you can only change the detect pin simply by modifying the

configuration here. For example, to change the 14
th
 pin of port A as the detect pin:

3.4.4. Customized Parameters

This section introduces how to use configuration customization to meet different requirements.

For example, if you want to use configuration for the FM module management, which happens

rarely though, steps below can be followed:

First, create following configuration items:

According to the relationship between fm_type and FM models (for example, 0 is RDA5820，1 is

TEA5767，and 2 is QN8006)，FM adopted here is RDA5820.

In the FM driver, following code is used to fetch the used FM pattern-- RDA5820, so that the right

code can be found later for FM driver to work normally.

[sddet_para]

detect_pin = port: PI4<0><1><1>

[sddet_para]

detect_pin = port: PA14<0><1><1>

[fm_para]

fm_pattern = 0

Allwinner Technology CO., Ltd.

Configuration System and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 16

April 22, 2011

{

 int fm_pattern;

 int ret;

 ret = OSAL_Script_FetchParser_Data(“fm_para”, “fm_pattern”, &fm_pattern, 1);

if(ret >= 0)

 return fm_pattern;

else

 return ret;

}

Allwinner Technology CO., Ltd.

Configuration System and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 17

April 22, 2011

4. How to Use Configuration Script

This section will elaborate on how to use the configuration script.

In the system, following functions are provided to fetch the configuration information.

4.1. Fetch Configuration Parameters

This function is powerful enough to fetch any value in the configuration script. For example, if

you want to get the subkey value of boot_clcok in main key Target:

The value fetched will be put to integer variable value, and usually the value is 406.

Function： int OSAL_Script_FetchParser_Data(char *main_name, char *sub_name, int

value[], int count);

Parameters：main_name main key name in configuration script, in character string

 sub_name subkey name in configuration script, in character string

 value data pointer, used to store fetched data

 count the maximum word number of the transferred dataspace

Returned value： if succeed, return 0;

 If fail, return -1

{

 int value;

 int ret;

 ret = OSAL_Script_FetchParser_Data(“target”, “boot_clock”, &value, 1);

 if(ret < 0)

 printf(“fetch script data fail\n”);

else

 printf(“fetch script data ok, value = %d\n”, value);

return ret;

}

Allwinner Technology CO., Ltd.

Configuration System and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 18

April 22, 2011

If you want to get the GPIO data, such as the twi_scl in twi_para, you can use:

This function will put the fetched GPIO information into gpio_info, which can then be used to call

functions provided by GPIO management module.

Besides, you can use the script function to get a character string. For example, with regards to

following main key and subkey,

[string_test]

string_demo = string:abcdefghijklmn

the subkey string_demo value can be accessed by calling following function, and the value saved

in string_info will be abcdefghijklmn in normal circumstances.

{

 user_gpio_set_t gpio_info[1];

 int ret;

 ret = OSAL_Script_FetchParser_Data(“twi_para”, “twi_scl”, gpio_info,

sizeof(user_gpio_set_t)/sizeof(int));

 if(ret < 0)

 printf(“fetch script gpio information fail\n”);

else

 printf(“fetch script gpio information ok \n”);

return ret;

}

Allwinner Technology CO., Ltd.

Configuration System and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 19

April 22, 2011

4.2. Fetch the Number of Subkeys

This function definitely is capable of fetching the number of subkeys in a main key, nevertheless,

it’s mainly used for check.

{

 char string_info[128];

 int ret;

 memset(string_info, 0, 128);

 ret = OSAL_Script_FetchParser_Data(“string_test”, “string_demo”, string_info,

128/sizeof(int));

 if(ret < 0)

 printf(“fetch script string information fail\n”);

else

 printf(“fetch script string information ok \n”);

return ret;

}

Function：int OSAL_Script_FetchSubKey_Count(char *main_name);

Parameters：main_name the main key name in configuration script, in character string

Returned value： if succeed, return the number of subkeys

 If fail, return -1

Allwinner Technology CO., Ltd.

Configuration System and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 20

April 22, 2011

By calling the function, you will get the number of all subkeys in target: 4

4.3. Fetch the Number of Main Keys

Just as OSAL_Script_FetchSubKey_Count, this function is mainly used to check.

This function is capable of fetching the number of all the main keys, however, it’s primarily used

for check as well.

Function：int OSAL_Script_FetchMainKey_Count(void);

Parameters：No

Returned value： if succeed, return the number of main keys

 If fail, return -1

{

 int sub_key_count;

 sub_key_count = OSAL_Script_FetchSubKey_Count (“target”);

 if(sub_key_count < 0)

 printf(“fetch script sub key count fail\n”);

else

 printf(“fetch script sub key count ok , sub_key_count = %d\n”,

sub_key_count);

return sub_key_count;

}

Allwinner Technology CO., Ltd.

Configuration System and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 21

April 22, 2011

By calling this function, you can get the number of main keys in configuration script.

4.4. Get the Number of GPIO in Main Keys

By calling this function, the number of GPIO subkeys can be available.

For example, that the twi_para has 2 GPIO subkeys can be known through:

Function：int OSAL_Script_FetchMainKey_GPIO_Count(char *main_name);

Parameters：main_name the main key name in configuration script, in character string

Returned value： if succeed, return the number of GPIO subkey;

if fail, return -1.

{

 int main_key_count;

 main_key_count = OSAL_Script_FetchMainKey_Count();

 if(main_key_count < 0)

 printf(“fetch script sub key count fail\n”);

else

 printf(“fetch script main key count ok , main_key_count = %d\n”,

main_key_count);

return main_key_count;

}

Allwinner Technology CO., Ltd.

Configuration System and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 22

April 22, 2011

If the parameter twi_para above is changed to target, 0 is returned; if it’s changed to nand_para,

23 is returned.

4.5. Fetch the GPIO Data in Main Keys

Function OSAL_Script_FetchMainKey_GPIO_Data is used to fetch the GPIO data in main keys.

By calling this function, you can get the number of GPIO subkeys fitting the main key name.

{

 int gpio_key_count;

 gpio_key_count = OSAL_Script_FetchMainKey_GPIO_Count (“twi_para”);

 if(gpio_key_count < 0)

 printf(“fetch script sub key count fail\n”);

else

 printf(“fetch script gpio key count ok , gpio_key_count = %d\n”,

gpio_key_count);

return gpio_key_count;

}

Function ： int OSAL_Script_FetchMainKey_GPIO_Data(char *main_name, void

*gpio_cfg, int gpio_count);

Parameters：main_name main key name in configuration script, in character string

 gpio_cfg used to store GPIO information, a member of user_gpio_set_t

 gpio_count the number of structs transferred in by users

 Returned Value： if succeed, return 0;

 if fail, return -1.

Allwinner Technology CO., Ltd.

Configuration System and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 23

April 22, 2011

By calling this function, you can get the GPIO subkey data in twi_para.

{

 user_gpio_set_t gpio_info[2];

 int ret;

 ret = OSAL_Script_FetchMainKey_GPIO_Data(“twi_para”,gpio_info, 2);

 if(ret < 0)

 printf(“fetch script gpio information fail\n”);

else

 printf(“fetch script gpio information ok \n”);

return ret;

}

Allwinner Technology CO., Ltd.

Configuration System and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 24

2011-04-22

5. GPIO Management

The GPIO configuration is used to define the GPIO usage in the script, and it can be realized by

heaps of functions provided by the system.

5.1. Request GPIO

Following function is used to request the GPIO handle and configure the GPIO attribute. It should

work with configuration script or a customized GPIO.

The data struct of user_gpio_set_t is shown below:

typedef struct

{

 char gpio_name[32]; //the GPIO name

 int port; //GPIO Port

 int port_num; //GPIO Port number

 int mul_sel; //GPIO function

 int pull; //GPIO build-in resistor status

 int drv_level; //GPIO driver strength

 int data; //GPIO level

}

user_gpio_set_t;

After this function is called, all configurations become valid.

Function ： __hdle OSAL_GPIO_Request (user_gpio_set_t *gpio_list, __u32

group_count_max);

Parameters：gpio_list data address, used to save the GPIO attribute originating

from configuration script or user customization

group_count_max the maximum number of GPIO data structs that can be saved

Returned Value： if succeed, return a non-NULL pointer;

 if fail, return a NULL pointer

Allwinner Technology CO., Ltd.

System Configuration and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 25

April 22, 2011

As for how to configure GPIO, following THREE methods are provided.

5.1.1. Request GPIO Through Main Keys

The GPIO information can be fetched by searching main keys in configuration script if GPIO

information comes from the configuration script. GPIO in main keys can be one or more, but if

there is no GPIO, the fetch will fail.

Here is an example:

In the example above,

1) OSAL_Script_FetchMainKey_GPIO_Data is called to fetch the GPIO configuration, and

then parameter“twi_para”is used to search all GPIO subkeys fitting the main key name

twi_para in configuration script, and the searched GPIO configuration parameters are put

to gpio_info. All attributes should be stored accordingly: gpio_name stores the subkey

names in configuration script, for example, GPIO name of twi_scl is twi_scl, and GPIO

name of twi_sda is twi_sda.

The third parameter “2” means to fetch two GPIO only. If the number of GPIO of a

{

 user_gpio_set_t gpio_info[2];

 int ret;

 __hdle gpio_hd;

 ret = OSAL_Script_FetchMainKey_GPIO_Data(“twi_para”, (void *)gpio_info, 2);

 if(ret < 0)

 {

 printf(“fetch script gpio information fail\n”);

 return -1;

}

gpio_hd = OSAL_GPIO_Request(gpio_info, 2);

return gpio_hd;

}

Allwinner Technology CO., Ltd.

System Configuration and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 26

April 22, 2011

module cannot be fixed, a large enough number can be put here to make sure that all

GPIO can be fetched. If the parameter X here is below the actual GPIO number, the

fetched GPIO number will be X.

2) Next, function OSAL_GPIO_Request is called, if succeed, a handle will be returned,

otherwise a NULL will be returned. Meanwhile, the twi_para becomes valid in hardware,

that is to say, the two GPIOs of TWI are successfully configured.

5.1.2. Request GPIO Through Main Keys and Subkeys

This method is limited to situations where only one GPIO needs to be configured: search the

single GPIO by matching the main key names and subkey names. You can also call the

function repeatedly to fetch all GPIO configurations if there are multiple GPIOs in a main

key, such as the card detect pin.

Here is an example.

In this function, OSAL_Script_FetchParser_Data is firstly called to fetch all the configurations

of the GPIO whose main key name is twi_para and subkey name is twi_scl. The fetched

{

 user_gpio_set_t gpio_info;

 int ret;

 __hdle gpio_hd;

 ret = OSAL_Script_FetchParser_Data (“twi_para”, “twi_scl”, (int *)&gpio_info,

sizeof(user_gpio_set_t)/sizeof(int));

 if(ret < 0)

 {

 printf(“fetch script gpio information fail\n”);

 return -1;

}

gpio_hd = OSAL_GPIO_Request(&gpio_info, 1);

return gpio_hd;

}

Allwinner Technology CO., Ltd.

System Configuration and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 27

April 22, 2011

information will be stored in gpio_info, and the fetched data size is

sizeof(user_gpio_set_t)/sizeof(int). Therefore, the gpio_info will end up:

 gpio_info.gpio_name = “twi_scl”

gpio_info.port = 2

gpio_info.port_num = 0

gpio_info.mul_sel = 2

gpio_info.pull = 1

gpio_info.drv_level = 1

gpio_info.data = 1

Secondly, function OSAL_GPIO_Request is called (the second parameter 1 indicates only ONE

GPIO needs to be configured), and a handle will be returned.

By now, twi_scl pin configuration of twi_para has completed.

5.1.3. Request GPIO Through Customization

In GPIO request, you can write code to determine which GPIO is used. For example, to use the

input/output function of 14
th
 pin of GPIOA, following method can be adopted:

Firstly, define a struct variable user_gpio_set_t gpio_info, and then assign value to it: default to be

output and high level, and the GPIO name attribute can either be empty or a customized name.

strcpy(gpio_info.gpio_name, “test_key_name”); //this step is optional;

gpio_info.port = 1; // Port A is used;

gpio_info.port_num = 14; // the 14
th
 pin is used;

gpio_info.mul_sel = 1; // select OUTPUT (0: INPUT)

gpio_info.pull = 1; // the build-in resistor is pulled up (0: high resistance, 2 :

pull-down)

gpio_info.drv_level = 1; // the driver strength is Level 1. (The driver strength

level can be 0~3)

gpio_info.data = 1; //output high level by default (0:low level, and 1：high

level.)

After value assignment, the function can be called, just as below:

Allwinner Technology CO., Ltd.

System Configuration and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 28

April 22, 2011

Supposing in the example above, value has been assigned to gpio_info, so after the function is

called, a handle will be returned, and PA14 will be in the customized state: output, build-in resistor

pulled up, driver strength level 1, and output high level.

5.2. Release GPIO

Following function can be used to release the requested GPIO handles, regardless of how they are

requested.

This function enables you to control the GPIO status after it’s released. Parameter

if_release_to_default_status can be 0, 1 and 2: 0/1 means after released, the GPIO is input, which

won’t lead to external level error; 2 means that after released, the GPIO remains the same status.

Function Usage: call the function, transfer a valid handle and a parameter that defines the

post-release GPIO status. You can judge from the returned value whether the handle release

succeeds and whether the transferred parameter is correct.

5.3. Fetch all the GPIOs Configuration of a Handle

Function OSAL_GPIO_DevGetAllPins_Status can be used to fetch all the GPIOs configuration of

a handle.

{

 __hdle gpio_hd;

gpio_hd = OSAL_GPIO_Request(&gpio_info, 1);

return gpio_hd;

}

Function ： __s32 OSAL_GPIO_Release(__hdle p_handler, __s32

if_release_to_default_status);

Parameters：p_handler GPIO handle，originating from the GPIO request function

 if_release_to_default_status to control the GPIO status after it is released

Returned Value： if succeed, return 0;

 if fail, return -1.

Allwinner Technology CO., Ltd.

System Configuration and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 29

April 22, 2011

By calling this function, you can get the status attribute of all GPIOs controlled by the handle. The

fetched information will be stored in gpio_status. For non-input/output GPIOs, the data item will

be “-1”, indicating this item is meaningless.

gpio_count_max defines the number of this strcut variable X: if the GPIO number Y exceeds

gpio_count_max X (X<Y), the number of fetched GPIO will be X; if gpio_count_max X

exceeds the GPIO number Y (X>Y), the fetched GPIO number will be Y.

if_get_from_hardware defines the source of the GPIO configuration: if it’s 1, it means to fetch

parameters from GPIO hardware controller; if it’s 0, it means to fetch the GPIO configuration

parameter when it’s initially requested.

Here takes twi_para as an example to illustrate the configuration parameters acquisition.

Supposing the twi_para value in configuration script has been requested, and its GPIO handle is

gpio_hd, therefore, in order to fetch the GPIO configuration information:

Function： Int OSAL_GPIO_DevGetAllPins_Status(__hdle devpin, user_gpio_set_t

*gpio_status, __u32 gpio_count_max , __u32 if_get_from_hardware);

Parameters：devpin GPIO handle, originating from GPIO request function

 gpio_status data address, used to store GPIO configuration attribute

 gpio_count_max the maximum number of the struct variables

 if_get_from_hardware indicating which configuration attribute will be fetched:

0—to get the initial configuration attribute, 1—to get the current hardware configuration

attribute

Returned Value： if succeed, return 0;

 If fail, return -1.

Allwinner Technology CO., Ltd.

System Configuration and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 30

April 22, 2011

In this function, the gpio_info has 10 members. In practice, if the twi_para GPIO number is 2, you

can directly write 2 here; if the number cannot be fixed, a large enough number, say, 10, can be

written here.

In the example, the initial configuration parameters are fetched, so the result should be:

gpio_info[0] stores twi_scl value, gpio_info[1] stores twi_sda value, and values of others (from

gpio_info[2] to gpio_info[9]) are 0;

gpio_info[0].gpio_name = “twi_scl” gpio_info[1].gpio_name = “twi_sda”

gpio_info[0].port = 2 gpio_info[1].port = 2

gpio_info[0].port_num = 0 gpio_info[1].port_num = 1

gpio_info[0].mul_sel = 2 gpio_info[1].mul_sel = 2

gpio_info[0].pull = 1 gpio_info[1].pull = 1

gpio_info[0].drv_level = 1 gpio_info[1].drv_level = 1

gpio_info[0].data = -1 gpio_info[1].data = -1

{

 user_gpio_set_t gpio_info[10];

 int ret;

 ret = OSAL_GPIO_DevGetAllPins_Status(gpio_hd, gpio_info, 10, 0);

 if(ret < 0)

 {

 printf(“fetch gpio information fail\n”);

}

else

{

 printf(“fetch gpio information ok\n”);

}

return ret;

}

Allwinner Technology CO., Ltd.

System Configuration and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 31

April 22, 2011

Next, we’ll take twi_para as an example to illustrate fetching parameters from hardware controller

in the case of space deficiency.

Since there is only one member in the group, less than the TWO GPIO in twi_para, only one

GPIO configuration attribute will be fetched from the actual hardware parameters after this

function is called.

These values seem identical with values in above example, because no operations are made to the

hardware after the request.

gpio_info[0].gpio_name = “twi_scl”

gpio_info[0].port = 2

gpio_info[0].port_num = 0

gpio_info[0].mul_sel = 2

gpio_info[0].pull = 1

gpio_info[0].drv_level = 1

gpio_info[0].data = -1

{

 user_gpio_set_t gpio_info[1];

 int ret;

 ret = OSAL_GPIO_DevGetAllPins_Status(gpio_hd, gpio_info, 1, 1);

 if(ret < 0)

 {

 printf(“fetch gpio information fail\n”);

}

else

{

 printf(“fetch gpio information ok\n”);

}

return ret;

}

Allwinner Technology CO., Ltd.

System Configuration and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 32

April 22, 2011

5.4. Fetch One GPIO Configuration of a Handle

Function OSAL_GPIO_DevGetONEPins_Status is used to fetch the attribute of a single GPIO

controlled by the handle.

By calling this function, the configuration of a single GPIO controlled by the handle can be

fetched. gpio_status is used to store GPIO configuration information, whose source is defined in

the 4
th

 parameter if_get_from_hardware: if it’s 0, it means to fetch the initial configuration; if it’s 1,

it means to fetch from the realtime hardware controller.

gpio_name, the GPIO name, serves to focus on some specific GPIO in a group. For example, in

order to fetch the twi_scl pin of twi_para, the GPIO name should be twi_scl.

Supposing the handle is gpio_hd, in order to fetch the twi_sda pin configuration in twi_para from

the current hardware controller:

Function：Int OSAL_GPIO_DevGetONEPins_Status(__hdle devpin, user_gpio_set_t

*gpio_status, const char *gpio_name, __u32 if_get_from_hardware);

Parameters：devpin GPIO handle，originating from GPIO request function

 gpio_status Data address, used to store GPIO configuration attribute. This

address has only one member;

 gpio_name GPIO name, originating from configuration script

 if_get_from_hardware indicating which configuration attribute will be fetched:

0—fetch the original configuration attribute; 1—fetch current hardware configuration

attribute;

Returned Value： if succeed, return 0;

 if fail, return -1.

Allwinner Technology CO., Ltd.

System Configuration and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 33

April 22, 2011

After this function is called, the twi_sda GPIO attribute controlled by gpio_hd can be acquired

from the hardware controller.

5.5. Set One GPIO Configuration of the Handle

Following Function is used to modify a GPIO configuration of the handle:

{

 user_gpio_set_t gpio_info[1];

 int ret;

 ret = OSAL_GPIO_DevGetONEPins_Status (gpio_hd, gpio_info, “twi_sdl”, 1);

 if(ret < 0)

 {

 printf(“fetch gpio information fail\n”);

}

else

{

 printf(“fetch gpio information ok\n”);

}

return ret;

}

Function： Int OSAL_GPIO_DevSetONEPin_Status(__hdle devpin, user_gpio_set_t

*gpio_status, const char *gpio_name, __u32 if_set_to_current_input_status);

Parameters ：devpin GPIO control handle, originating from GPIO request function

 gpio_status used to store GPIO configuration attribute and has only one member

 gpio_name GPIO name，originating from configuration script.

 if_set_to_current_input_status the source of parameters: 0—modify the hardware

controller based on original configuration; 1—modify the hardware controller based on

currently input parameters.

Returned Value： If succeed, return 0;

 If fail, return -1.

Allwinner Technology CO., Ltd.

System Configuration and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 34

April 22, 2011

The modified GPIO attribute is specified in gpio_name, similar to that in

OSAL_GPIO_DevGetONEPins_Status.

if_set_to_current_input_status defines the modified data source: “0” means that the modification

is based on the original configuration, so the second parameter is meaningless; “1” means that the

modification is based on currently input attributes, i.e. the attributes of the second parameter.

The GPIO configuration that can be modified includes the GPIO function, build-in resistor status,

driver strength, and output level. GPIO names cannot be modified in that the ports and port

numbers are fixed when GPIO are requested.

Here takes the twi_para as an example to demonstrate how to use this function.

Supposing the GPIO handle gpio_hd controls twi_sda and twi_scl, and twi_sda has been modified,

in order to modify it back to the initial configuration, following function can be called:

In the parameter list, the first one is the handle gpio_hd, the second is “0”, a null pointer, the third

is the GPIO name, and the last one is “0”, indicating the initial input configuration is used, in

which case the second parameter is meaningless. However, if the last parameter is “1” and the

second parameter is “0”, an error will be returned in that the currently input data is invalid.

{

 int ret;

 ret = OSAL_GPIO_DevSetONEPins_Status (gpio_hd, 0, “twi_sda”, 0);

 if(ret < 0)

 {

 printf(“set gpio information fail\n”);

}

else

{

 printf(“set gpio information ok\n”);

}

return ret;

}

Allwinner Technology CO., Ltd.

System Configuration and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 35

April 22, 2011

Here is another example: supposing the GPIO handle is gpio_hd, to modify twi_scl according to

the currently input parameters:

By calling this function, the twi_scl can be changed to output, i.e. the PB1 pin is changed to output

high level.

{

 OSAL_GPIO_DevSetONEPins_Status (gpio_hd, 0, “twi_sda”, 1);

}

Error: The currently input data will be used, but a null pointer is input here.

{

 int ret;

 user_gpio_set_t gpio_info；

 gpio_info.mul_sel = 1; //changed to output;

 gpio_info.pull = 1; // changed to pull-up;

 gpio_info.drv_level=1; // set to Level1

 gpio_info.data =1; // set to high level

 ret = OSAL_GPIO_DevSetONEPins_Status (gpio_hd, &gpio_info, “twi_scl”, 1);

 if(ret < 0)

 {

 printf(“set gpio information fail\n”);

}

else

{

 printf(“set gpio information ok\n”);

}

return ret;

}

Allwinner Technology CO., Ltd.

System Configuration and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 36

April 22, 2011

5.6. Set One GPIO IO Status of the Handle

The OSAL_GPIO_DevSetONEPIN_IO_STATUS can be used to modify the input/output status of a

GPIO, but not other functions, otherwise, errors will be returned.

This function is confined to IO function allocation. Since the gpio_name comes from

configuration script, it can be left empty for a single GPIO.

Supposing there is following configuration in the script:

After the GPIO handle is fetched, in order to modify the GPIO to input, following function should

be called:

If it’s confirmed that there is only one GPIO subkey in Main Key test, or the GPIO is requested

through main keys and subkeys, or the GPIO is requested through customization, this function can

Function ： Int OSAL_GPIO_DevSetONEPIN_IO_STATUS(__hdle devpin, __u32

if_set_to_output_status, const char *gpio_name);

Parameters：devpin GPIO control handle, originating from GPIO request function;

 if_set_to_output_status whether set to output: 0—set to input; 1—set to output;

 gpio_name GPIO name，originating from configuration script

Returned Value： if succeed, return 0;

 if fail, return -1.

[test]

test_key = port: pa14<1><1><1><1>

; this GPIO uses the 14
th
 pin of Port A: output, driver strength Level 1, build-in resistor

pull-up, and default output high level.

{

 int ret;

 ret = OSAL_GPIO_DevSetONEPIN_IO_STATUS (gpio_hd, 0, “test_key”);

return ret;

}

Allwinner Technology CO., Ltd.

System Configuration and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 37

April 22, 2011

be called with the key name concealed, as shown:

5.7. Set One GPIO Build-in Resistor Status of the Handle

Function OSAL_GPIO_DevSetONEPIN_PULL_STATUS is used to modify the build-in resistor

status of a GPIO controlled by the handle. There are three status options to choose from: pull-up,

pull-down, and high resistance, so if other status functions are selected, errors will be returned.

If the handle controls more than one GPIO, the gpio_name helps to narrow down to a specific

GPIO. The GPIO name either comes from the configuration file, or is a user-defined character

string.

Here takes twi_para as an example to demonstrate how to set the GPIO build-in resistor attribute:

suppose the handle is gpio_hd, so in order to change the twi_scl build-in resistor to pull-down

status:

{

 int ret;

 ret = OSAL_GPIO_DevSetONEPIN_IO_STATUS (gpio_hd, 0, 0);

return ret;

}

Function：Int OSAL_GPIO_DevSetONEPIN_PULL_STATUS(__hdle devpin, __u32

set_pull_status, const char *gpio_name);

Parameters：

Devpin GPIO control handle, originating from GPIO request function

 Set_pull_status Set the build-in resistor status: 0—high resistance, 1—pull up,

2—pull down

 gpio_name GPIO name，originating from configuration script

Returned Value： if succeed, return 0;

 if fail, return -1.

Allwinner Technology CO., Ltd.

System Configuration and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 38

April 22, 2011

The second parameter “2” means the resistor is pulled down. Except 0/1/2, other parameters are

invalid.

If the handle controls only one GPIO, “0” instead of the GPIO name can be written to the GPIO

name. For example, if there is only one GPIO named twi_scl in twi_para, following method is

adoptable:

But if there are more than one GPIO in twi_para, write “0” to the third parameter will lead to

errors.

5.8. Set One GPIO Driver Strength of the Handle

The function GPIO_DevSetONEPIN_DRIVER_LEVEL_STATUS can be used to modify the driver

strength of a GPIO controlled by the handle. The driver strength refers to the GPIO ability to drive

external devices. The stronger the driver strength, the stronger the ability to change the level, and

the steeper the waves will be, but it may lead to overshoot, whereas weaker driver strength has

flatter wave, more time-consuming, but will not render overshoot. Even though Level 1 is suitable

{

 int ret;

 ret = OSAL_GPIO_DevSetONEPIN_PULL_STATUS (gpio_hd, 2, “twi_scl”);

return ret;

}

{

 int ret;

 ret = OSAL_GPIO_DevSetONEPIN_PULL_STATUS (gpio_hd, 2, 0);

return ret;

}

Allwinner Technology CO., Ltd.

System Configuration and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 39

April 22, 2011

for most cases, other driver strength levels may be required by some demanding devices.

This function resembles OSAL_GPIO_DevSetONEPIN_PULL_STATUS in parameters and usage,

excluding the second parameter.

Here are two examples illustrating how to modify the driver strength of a GPIO.

Supposing the GPIO handle gpio_hd controls two GPIOs of twi_para: twi_scl and twi_sda, now to

modify the twi_scl driver strength to Level 3:

And following is a user-defined GPIO, to modify its driver strength from Level 1 to Level 2:

Function ： Int GPIO_DevSetONEPIN_DRIVER_LEVEL_STATUS(__hdle devpin,

__u32 set_driver_level, const char *gpio_name);

Parameters：devpin GPIO control handle, originating from GPIO request function

 set_driver_level set the driver strength level: level 0~level 3

 gpio_name GPIO name，originating from configuration script

Returned Value： if succeed, return 0;

 if fail, return -1.

{

 int ret;

 ret = OSAL_GPIO_DevSetONEPIN_PULL_STATUS (gpio_hd, 3, “twi_scl”);

return ret;

}

Allwinner Technology CO., Ltd.

System Configuration and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 40

April 22, 2011

5.9. Read One GPIO Level of the Handle

Function OSAL_GPIO_DevREAD_ONEPIN_DATA can be used to read the level of an input GPIO:

if the returned value is 0, it is low level; if the returned value is 1, it is high level; if the returned

value is -1, it means the current GPIO is not in INPUT status.

{

 int ret;

 user_gpio_set_t gpio_info;

 __hdle gpio_hd;

 gpio_info.port = 1; // use Port A

 gpio_info.port_num = 14; //use the 14
th
 pin of Port A

 gpio_info.mul_sel = 1; //set to output

 gpio_info.pull = 1; //the resistor is pulled up by default.

 gpio_info.drv_level = 1; //the driver strength is Level 1 by default.

 gpio_info.data = 1; //output high level by default

 gpio_hd = OSAL_GPIO_Request(&gpio_info, 1); //only request one GPIO

 if(!gpio_hd)

 {

 return -1;

}

 ret = OSAL_GPIO_DevSetONEPIN_PULL_STATUS (gpio_hd, 2, 0);

return ret;

}

Function：Int OSAL_GPIO_DevREAD_ONEPIN_DATA (__hdle devpin, const char

*gpio_name);

Parameters：devpin GPIO control handle，originating from GPIO request function

 gpio_name GPIO name，originating from configuration script or customization

Returned Value：if return 1, high level;

 if return 0, low level;

 if return -1, the GPIO is not in input status.

Allwinner Technology CO., Ltd.

System Configuration and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 41

April 22, 2011

Supposing the handle gpio_hd controls two GPIOs of twi_para: sda and scl, to read their port

levels, following method can be adopted:

Obviously, both returned values ret1 and ret2 will be -1 in that they are in non-input status.

Following code exemplifies how to read the port level of a customized GPIO:

{

 int ret1, ret2;

 ret1 = OSAL_GPIO_DevREAD_ONEPIN_DATA(gpio_hd, “twi_scl”);

 ret2 = OSAL_GPIO_DevREAD_ONEPIN_DATA(gpio_hd, “twi_sda”);

return 0;

}

Allwinner Technology CO., Ltd.

System Configuration and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 42

April 22, 2011

In the example above, OSAL_GPIO_DevREAD_ONEPIN_DATA is called twice:

(1) Since the PA14 is set to input initially, its level can be read;

(2) Since PA14 is then modified to output, so its level cannot be read.

Just as other functions mentioned above, the second parameter in this function can be written to

“0” if there is only one GPIO controlled by the handle, otherwise, it’s should be a specific GPIO

name.

{

 int ret;

 user_gpio_set_t gpio_info;

 __hdle gpio_hd;

 gpio_info.port = 1; //use Port A

 gpio_info.port_num = 14; //use the 14
th
 pin of Port A

 gpio_info.mul_sel = 0; //set to input

 gpio_info.pull = 1; //the resistor is pulled up by default;

 gpio_info.drv_level = 1; //the driver strength is Level 1 by default;

 gpio_info.data = 1; //output high level by default (invalid);

 gpio_hd = OSAL_GPIO_Request(&gpio_info, 1); //only request one GPIO

 if(!gpio_hd)

 {

 return -1;

}

 ret = OSAL_GPIO_DevREAD_ONEPIN_DATA(gpio_hd, 0); (1)

 OSAL_GPIO_DevSetONEPIN_IO_STATUS(gpio_hd, 1, 0);

 ret = OSAL_GPIO_DevREAD_ONEPIN_DATA(gpio_hd, 0); (2)

return 0;

}

Allwinner Technology CO., Ltd.

System Configuration and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 43

April 22, 2011

5.10. Set One GPIO Port Level of the Handle

The function OSAL_GPIO_DevWRITE_ONEPIN_DATA can be used to modify the port level of

an OUTPUT GPIO to high level (1) or low level (0). However, if the GPIO is not in output status,

this function is invalid, and “-1” will be returned.

Following example demonstrates how to modify a GPIO output level.

Supposing the GPIO handle controls the two GPIO of twi_para: twi_sda and twi_scl, to modify

their output level:

Obviously, this function cannot be successfully called since neither twi_sda nor twi_scl is output,

and a feasible method is to modify their port level after altering two GPIOs to output.

Function ： Int OSAL_GPIO_DevWRITE_ONEPIN_DATA(__hdle devpin, __u32

value_to_gpio, const char *gpio_name);

Parameters：devpin GPIO control handle，originating from GPIO request function

value_to_gpio set the output level value: 0—low level, 1—high level

 gpio_name GPIO name, originating from configuration script or customization

Returned Value: if succeed, return0;

 if fail, return -1.

{

 int ret1, ret2;

 ret1 = OSAL_GPIO_DevWRITE_ONEPIN_DATA(gpio_hd, 1, “twi_scl”);

 ret2 = OSAL_GPIO_DevWRITE_ONEPIN_DATA(gpio_hd, 0, “twi_sda”);

return 0;

}

Allwinner Technology CO., Ltd.

System Configuration and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 44

April 22, 2011

By calling function OSAL_GPIO_DevSetONEPIN_IO_STATUS, the GPIO are altered to output,

and then set twi_scl to high level and twi_sda to low level by calling

OSAL_GPIO_DevWRITE_ONEPIN_DATA.

If there is only one GPIO (PA14) controlled by the handle, the gpio_name can be empty, as shown

below:

{

 int ret1, ret2;

 OSAL_GPIO_DevSetONEPIN_IO_STATUS(gpio_hd, 1, “twi_scl”);

 OSAL_GPIO_DevSetONEPIN_IO_STATUS(gpio_hd, 1, “twi_sda”);

 ret1 = OSAL_GPIO_DevWRITE_ONEPIN_DATA(gpio_hd, 1, “twi_scl”);

 ret2 = OSAL_GPIO_DevWRITE_ONEPIN_DATA(gpio_hd, 0, “twi_sda”);

return 0;

}

Allwinner Technology CO., Ltd.

System Configuration and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 45

April 22, 2011

When requested, PA14 is set to output, high level. By calling function (1), it is set to output low

level, and then it’s set to input, making the port level unconfigurable, so when function (2) is

called to set it to high level, “-1” is returned because it is not in output status.

{

 int ret;

 user_gpio_set_t gpio_info;

 __hdle gpio_hd;

 gpio_info.port = 1; //use Port A

 gpio_info.port_num = 14; //use the 14
th
 pin of PortA

 gpio_info.mul_sel = 1; //set to output

 gpio_info.pull = 1; //build-in resistor is pulled up

 gpio_info.drv_level = 1; //driver strength is Level 1

 gpio_info.data = 1; //output high level

 gpio_hd = OSAL_GPIO_Request(&gpio_info, 1); // request only one GPIO

 if(!gpio_hd)

 {

 return -1;

}

 ret = OSAL_GPIO_DevWRITE_ONEPIN_DATA(gpio_hd, 0, 0); (1)

 OSAL_GPIO_DevSetONEPIN_IO_STATUS(gpio_hd, 0, 0);

 ret = OSAL_GPIO_DevWRITE_ONEPIN_DATA(gpio_hd, 1, 0); (2)

return 0;

}

Allwinner Technology CO., Ltd.

System Configuration and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 46

April 22, 2011

5.11. The Handle in GPIO Management

5.11.1. What Handles are Used for?

The handle is only an address pointing to a memory area that stores some valid data, such as the

file pointer.

Handles are used in GPIO management for GPIO safety, especially in cases where GPIO are

multiplexed. For example, if PC0 can be used by both NAND and Card, which has the access? A

conflict check mechanism in GPIO management helps to figure out the question: if PC0 is not

used, NAND can access it on request, and before it is released by NAND, it cannot be accessed by

Card.

This mechanism helps in three aspects:

1) Avoid conflict of GPIO access among modules;

2) Avoid conflict between module function and IO function;

3) Avoid conflict between IO input and IO output;

5.11.2. Avoid Conflict of GPIO Access among Modules

Actually, both request and handles are necessary in GPIO management.

Without the request, the Card can access PC0 any time, even when PC0 is used by NAND, and

that may render errors in NAND. Likewise, if NAND accesses PC0 when it’s used by Card, errors

may occur to Card.

If there is request, but no handles, it seems that NAND can directly control the GPIO with

configuration script data (as shown below), but when PC0 is released without the handle, it’s hard

to know which module controlled PC0.

Allwinner Technology CO., Ltd.

System Configuration and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 47

April 22, 2011

Since the handle is not required to be returned on GPIO request, Card can request PC0 as well,

even when PC0 is used by NAND:

Since PC0 is used by NAND, the card request will fail, so in that case, Card may choose to

mandatorily release PC0 from NAND, which will bring about errors to NAND:

{

 user_gpio_set_t gpio_info[1];

 gpio_info.port = 3; // use Port C

 gpio_info.port_num = 0; //use the 0 pin of Port C

 gpio_info.mul_sel = 2; // used for NAND

 gpio_info.pull = 1; // build-in resistor is pulled up

 gpio_info.drv_level = 1; // driver strength is Level 1

 OSAL_GPIO_Request(gpio_info, 1);

return 0;

}

{

 user_gpio_set_t gpio_info[1];

 gpio_info.port = 3; //use Port C

 gpio_info.port_num = 0; // use the 0 pin of Port C

 gpio_info.mul_sel = 3; //used for card

 gpio_info.pull = 1; //build-in resistor is pulled up

 gpio_info.drv_level = 1; //driver strength is Level 1

 OSAL_GPIO_Request(gpio_info, 1);

return 0;

}

Allwinner Technology CO., Ltd.

System Configuration and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 48

April 22, 2011

To settle these problems, handles can be introduced in for the GPIO management: when PC0 is

accessible and requested by NAND, NAND will get a handle that controlling PC0, which cannot

be forcefully released by other modules like Card.

5.11.3. Avoid Conflict between Modules and IO

In Linux OS, the port level can be easily set and read through a function, but this is based on the

premises that the GPIO is not used at that time, otherwise, errors may occur. For example, if the

PC0 level is read when it is used by NAND, errors may occur to NAND because this operation

will alter PC0 function to input.

A solution is to request the PC0 handle before operating PC0: if the handle cannot be requested, it

means PC0 is used and not accessible. If operation is made to it forcefully, errors may occur.

However, with handles introduced in the GPIO management, if the PC0 handle cannot be

requested, it cannot be operated.

5.11.4. Avoid Conflict between IO Input and IO Output

The IO conflict is similar to that of module conflict.

Here takes PC0 as an example to illustrate: Module A wants to read PC0 level, and conducts

different operations at high level and low level, whereas Module B wants to alter PC0 level,

output high level and low level at different time. If two modules operate at the same time, errors

may occur, therefore, handles can be introduced to settle the conflict.

{

 user_gpio_set_t gpio_info[1];

 gpio_info.port = 3; //use Port C

 gpio_info.port_num = 0; // use the 0 pin of Port C

 gpio_info.mul_sel = 3; //used for card

 gpio_info.pull = 1; //build-in resistor is pulled up

 gpio_info.drv_level = 1; //driver strength is Level 1

 OSAL_GPIO_Release(gpio_info, 0);

return 0;

}

Allwinner Technology CO., Ltd.

System Configuration and GPIO Management V1.01

Copyright © 2011 Allwinner Technology. All Rights Reserved. 49

April 22, 2011

6. Declaration

This Configuration System and GPIO Management is the original work and copyrighted property

of Allwinner Technology (“Allwinner”). Reproduction in whole or in part must obtain the written

approval of Allwinner and give clear acknowledgement to the copyright owner.

The information furnished by Allwinner is believed to be accurate and reliable. Allwinner reserves

the right to make changes in circuit design and/or specifications at any time without notice.

Allwinner does not assume any responsibility and liability for its use. Nor for any infringements of

patents or other rights of the third parties which may result from its use. No license is granted by

implication or otherwise under any patent or patent rights of Allwinner. This documentation

neither states nor implies warranty of any kind, including fitness for any particular application.

	Configuration system and GPIO management V1.01
	Revision History
	Table of Contents
	1. Introduction
	2. Term Definition
	2.1. Configuration Script
	2.2. Main Key
	2.3. Subkey
	2.4. Subkey Value
	2.5. GPIO Description
	2.6. Configuration Script Modification

	3. Configuration System Workflow and App
	3.1. Generate Configuration Data in PC
	3.2. Data Transfer in System Boot
	3.3. Data Transfer in Configuration Syst
	3.4. Configuration System Application
	3.4.1. Application Overview
	3.4.2. Different Hardware Modules
	3.4.3. Difference Parameters for the Sam
	3.4.4. Customized Parameters

	4. How to Use Configuration Script
	4.1. Fetch Configuration Parameters
	4.2. Fetch the Number of Subkeys
	4.3. Fetch the Number of Main Keys
	4.4. Get the Number of GPIO in Main Keys
	4.5. Fetch the GPIO Data in Main Keys

	5. GPIO Management
	5.1. Request GPIO
	5.1.1. Request GPIO Through Main Keys
	5.1.2. Request GPIO Through Main Keys an
	5.1.3. Request GPIO Through Customizatio

	5.2. Release GPIO
	5.3. Fetch all the GPIOs Configuration o
	5.4. Fetch One GPIO Configuration of a H
	5.5. Set One GPIO Configuration of the H
	5.6. Set One GPIO IO Status of the Handl
	5.7. Set One GPIO Build-in Resistor Stat
	5.8. Set One GPIO Driver Strength of the
	5.9. Read One GPIO Level of the Handle
	5.10. Set One GPIO Port Level of the Han
	5.11. The Handle in GPIO Management
	5.11.1. What Handles are Used for?
	5.11.2. Avoid Conflict of GPIO Access am
	5.11.3. Avoid Conflict between Modules a
	5.11.4. Avoid Conflict between IO Input

	6. Declaration

